The Daily Brain is a website for people who love asking questions and searching for answers – especially when the answers lead to new questions.

 

Syndicated by

Search
Get the Books

 

 

 

 

Featured Goodies
Friday
Feb212014

How to Squeeze Snake Oil From Deer Antlers and Make Millions

If I offered to sell you a liquid extract made from the velvety coating of deer antlers, claiming that it will catalyze muscle growth, slow aging, improve athletic performance and supercharge your libido – I’d expect you'd be a little skeptical. But what if I added that a huge percentage of professional athletes are using the stuff and paying top dollar, $100 or more an ounce, and swear up and down that just a few mouth sprays a day provides all benefits as advertised? Would you be willing to give it a try?

Ever since former Baltimore Ravens star Ray Lewis admitted a few months ago that he used deer antler spray (though subsequently denied it), the market for the stuff has exploded. Some estimates say that close to half of all professional football and baseball players are using it and a hefty percentage of college players as well, to say nothing of the army of weightlifters and bodybuilders that have made the spray a daily part of their routines.

TV journalism bastion 60 Minutes recently ran a special sports segment about "Deer Antler Man" Mitch Ross, the product's highest profile salesman, and the tsunami of buyers for oral deer antler spray and its growing list of celebrity devotees. Without question, deer antler spray has captivated the attention of the sports world and is rapidly pushing into mainstream markets.

Let’s take a look at the science behind the claims and try to find out what’s really fueling the surge in sales for this peculiar product.

The velvety coating of deer antlers is a chemically interesting material. For centuries it’s been used in eastern traditions as a remedy for a range of maladies, and there’s an underlying rationale for why it theoretically could be useful for certain conditions. The velvet coating contains small amounts of insulin-like growth factor 1, or IGF-1, that has been studied for several decades as a clinically proven means to reverse growth disorders in humans. For example, in children born with Laron Syndrome—a disorder that causes insensitivity to growth hormone, resulting in dwarfism—treatment with IGF-I has been shown to dramatically increase growth rates.  IGF-1 appears to act as a chemical facilitator for the production of growth hormone from the pituitary gland, and in sufficient amounts even synthetically derived IGF-1 can help boost physical growth.

That’s the reason why IGF-1 has been banned by the Food and Drug Administration (FDA) and the World Anti-Doping Agency in certain forms as having similar outcomes to using human growth hormone and anabolic steroids.  The forms these agencies have banned, however, are high-dosage, ultra-purified liquids administered by injection.

Why can’t the FDA and anti-doping agencies ban IGF-1 outright? For the simple reason that the chemical, in trace amounts, is found in things we eat every day: red meat, eggs and dairy products. Every time you eat a juicy ribeye or have a few eggs over easy, you’re ingesting IGF-1.

In the tiny amounts of the substance found in these foods, we may experience a cumulative, positive effect on muscle repair over time, but you’ll never be able to drink enough whole milk in a sitting to experience the anabolic effects you’d get from a syringe full of concentrated and purified IGF-1.

As I mentioned, the velvety substance on growing deer antlers also contains trace amounts of IGF-1, and (along with oddities like powdered tiger bone) has been sold in China for centuries as a traditional cure for several ailments. In traditional Chinese medicine, the antler is divided into segments, each segment targeted to different problems.  The middle segment, for example, is sold as a cure for adult arthritis, while the upper section is sold as a solution for growth-related problems in children. The antler tip is considered the most valuable part and sells for top dollar.

The main source for the market explosion in deer antler spray is New Zealand, which produces 450 tons of deer velvet annually, compared to the relatively small amount produced by the US and Canada: about 20 tons annually. Deer can be killed outright for their antlers, but in New Zealand the more accepted procedure is to anesthetize the deer and remove the antlers at the base. The antlers are then shipped overseas to the growing market demanding them.

The reason why deer antler velvet is usually turned into an oral liquid spray instead of a pill (although it is also sold in pill form around the world) is that the trace proteins in the substance are rapidly broken down by the digestive system, so only a fraction of the already tiny amount actually makes it into the bloodstream. In spray form, IGF-1 can potentially penetrate mucosal membranes and enter the bloodstream intact more quickly. Purchasing the spray form can run from anywhere between about $20 for a tiny bottle to $200 for two ounces. Standard doses are several sprays per day, so the monthly costs of using the product are exorbitant.

The question is does using deer antler spray deliver the benefits its sellers claim? These alleged benefits include accelerated muscle growth and muscle repair, tendon repair, enhanced stamina, slowing of the aging process, and increased libido – a virtual biological panacea of outcomes.

The consensus opinion from leading endocrinologists studying the substance, including Dr. Roberto Salvatori at the Johns Hopkins School of Medicine and Dr. Alan Vogol at the University of Virginia,  is that the chances of it delivering on any of these benefits are slim to none.  The reason is simply that there's far too little of the substance in even the purest forms of the spray to make any difference.

Think of it this way: If a steak contains roughly the same trace amount of IGF-1 as deer antler velvet, is there any evidence to suggest that eating steak can provide the same array of benefits claimed for deer antler spray?  No, there’s not a shard of clinical evidence to support that claim.

And yet, thousands of people are paying close to $200 a bottle for the spray believing that it will deliver these benefits.  With such high-profile celebrity connections as Ray Lewis and golf superstar Vijay Singh, there’s little wonder why the craze has picked up momentum. But in light of scientific evidence, there’s no credible reason to pay $200 or any amount for a bottle of deer antler spray.

Aside from the lack of evidence supporting benefits, it’s unclear what the negative effects may be of using the product long-term.  WebMD reports that the compounds in the spray may mimic estrogen in the body, which could contribute to spawning a variety of cancers or worsening of conditions such as uterine fibroids in women. Elevated estrogen levels in men can throw off hormonal balance and lead to a thickening waistline and a host of related metabolic problems.

The takeaway is this: deer antler spray is the latest high-priced snake oil captivating the market. Not only will it cost you a lot of money and not deliver promised benefits, but it could lead to negative health outcomes. Let the deer keep their antler velvet and keep your cash in your wallet.

You can find David DiSalvo on Twitter @neuronarrative and at his website, The Daily Brain. His latest book is Brain Changer: How Harnessing Your Brain’s Power To Adapt Can Change Your Life.

Sunday
Feb092014

The Era Of Genetically-Altered Humans Could Begin This Year

By the middle of 2014, the prospect of altering DNA to produce a genetically-modified human could move from science fiction to science reality.  At some point between now and July, the UK parliament is likely to vote on whether a new form of in vitro fertilization (IVF)—involving DNA from three parents—becomes legally available to couples. If it passes, the law would be the first to allow pre-birth human-DNA modification, and another door to the future will open.

The procedure involves replacing mitochondrial DNA (mtDNA) to avoid destructive cell mutations. Mitochondria are the power plants of human cells that convert energy from food into what our cells need to function, and they carry their own DNA apart from the nuclear DNA in our chromosomes where most of our genetic information is stored. Only the mother passes on mtDNA to the child, and it occasionally contains mutations that can lead to serious problems.

According to the journal Nature, an estimated 1 in 5,000-10,000 people carry mtDNA with mutations leading to blindness, diabetes, dementia, epilepsy and several other impairments (the equivalent of 1,000 – 4,000 children born each year in the U.S.). Some of the mutations lead to fatal diseases, like Leigh Syndrome, a rare neurological disorder that emerges in infancy and progressively destroys the ability to think and move.

By combining normal mitochondrial DNA from a donor with the nucleus from a prospective mother’s egg, the newborn is theoretically free from mutations that would eventually lead to one or more of these disorders. While never tried in humans (human cell research on mtDNA has so far been confined to the lab), researchers have successfully tested the procedure in rhesus monkeys.

Last March, the UK Human Fertilization and Embryology Authority wrapped up a lengthy study of safety and ethical considerations and advised parliament to approve the procedure in humans. According to New Scientist magazine, parliament is likely to vote on the procedure by July of this year. If the procedure overcomes that hurdle, it will still take several months to pass into law, but the initial vote will allow researchers to begin recruiting couples for the first human mtDNA replacement trials.

The U.S. is not nearly as close to approving mtDNA replacement as the UK seems poised to do; the U.S. Food and Drug Administration will start reviewing the data in earnest in February.  Among the concerns on the table is whether the mtDNA donor mother could be considered a true “co-parent” of the child, and if so, can she claim parental rights?

Even though the donor would be contributing just 0.1 percent of the child’s total DNA (according to the New Scientist report), we don’t as yet have a DNA benchmark to judge the issue. Who is to say what percentage of a person’s DNA must come from another human to constitute biological parenthood?

Other scientists have raised concerns about the compatibility of donor mtDNA with the host nucleus and believe the push to legalize human trials is premature. By artificially separating mtDNA from the nucleus, these researchers argue, we may be short-circuiting levels of genetic communication that we're only beginning to fully understand.

These are but two of many issues that this procedure will surface in the coming months. One thing is certain: we’re rapidly moving into new and deeper waters, and chances are we're going to need a bigger boat.

You can find David DiSalvo on Twitter @neuronarrative and at his website, The Daily Brain. His latest book is Brain Changer: How Harnessing Your Brain’s Power To Adapt Can Change Your Life.

 

Tuesday
Feb042014

Why Is Heroin Abuse Rising While Other Drug Abuse Is Falling?

Peter Shumlin, Democratic governor of Vermont, moved heroin addiction to the front burner of national news by devoting his entire State of the State address to his state’s dramatic increase in heroin abuse. Shumlin described the situation as an “epidemic,” with heroin abuse increasing 770 percent in Vermont since 2000.

Vermont is a microcosm of the nation. Across the U.S., heroin abuse among first-time users has increased by nearly 60 percent in the last decade, from about 90,000 to 156,000 new users a year, according to the U.S. Substance Abuse and Mental Health Services Administration (SAMHSA).

At the same time, non-medical prescription opiate abuse has slowly decreased.  According to the SAMHSA 2012 National Survey on Drug Use and Health, the number of new non-medical users of pain killers in 2012 was 1.9 million; in 2002 it was 2.2 million. [It bears repeating that these stats are for abuse of non-medical prescription pain killers, not abuse of drugs obtained with a prescription.]

In the same time-frame, abuse of methamphetamine also decreased. The number of new users of meth among persons aged 12 or older was 133,000 in 2012, compared to about 160,000 in 2002.

Cocaine abuse also fell, from about 640,000 new users in 2012 from over 1 million in 2002. Crack abuse fell from over 200,000 users in 2002 to about 84,000 in 2012 (a number that’s held steady for the last three years).

The statistics suggest that heroin has taken up the slack from fall offs among other major drugs (only marijuana and hallucinogens like ecstasy have held steady or slightly increased among new users over the last decade; not surprising since they’re the drugs of choice among the youngest users, and since pot has been angling toward legalization for the last few years).

Most surprising in this sea of stats is the drop in non-medical prescription opiate abuse overlapping with an increase in heroin abuse. The reason may come down to basic economics: illegally obtained prescription pain killers have become more expensive and harder to get, while the price and difficulty in obtaining heroin have decreased.  An 80 mg OxyContin pill runs between $60 to $100 on the street. Heroin costs about $9 a dose. Even among heavy heroin abusers, a day’s worth of the drug is cheaper than a couple hits of Oxy.

Laws cracking down on non-medical prescription pain killers have also played a role. The amount of drugs like Oxy hitting the streets has decreased, but the steady flow of heroin hasn’t hiccupped.  Many cities are reporting that previous non-medical abusers of prescription pain killers—who are often high income professionals—have turned to heroin as a cheaper, easier-to-buy alternative.

One conclusion that can be drawn from the stats is that prescription opiates are serving as a gateway drug for heroin, not so much by choice but by default. The market moves to fill holes in demand, and heroin is effectively filling fissures in demand opened by legal pressures and cost.

Another interesting stat is that among first-time drug users, the mean age of initiation for non-medical prescription pain killers and heroin is virtually identical: 22 to 23 years old. That would also support an argument that there’s a cross-over effect from drugs like Oxy to heroin (in contrast, the mean ages for first-time users of pot and ecstasy are 18 and 20, respectively).

Vermont’s heroin problem would seem a foretelling of things to come in the more affluent parts of the country. According to the U.S. Census Bureau, Vermont’s median household income, home ownership rate, and percentage of people with graduate and professional degrees are all higher than the national averages, and Vermont’s percentage of those living at or below poverty level is significantly lower than the national average.

The bottom line: Vermont’s stratospheric heroin increase is happening where the money is, and the national drug abuse trends suggest that the same thing is happening across the country.

You can find David DiSalvo on Twitter @neuronarrative and at his website, The Daily Brain. His latest book is Brain Changer: How Harnessing Your Brain’s Power To Adapt Can Change Your Life.

Sunday
Jan262014

How Video Games Will Help Us Steal Back Our Focus 

I’ve become a focus junkie. If I see something written in a legit publication about techniques or technologies to improve mental focus, I freebase it—mainly because the forces draining focus are unrelenting, and I’m convinced that the only way to regain balance is by indulging measures that are just as intense. (My working philosophy: extreme forces call for extreme adaptation, using the best tools and strategies science can afford us.)

Enter author and psychologist Daniel Goleman, popularizer of “Emotional Intelligence”, and author of a new book about the power of focus called, simply, “Focus”.  Goleman is one of my favorite writers in the psychology space because his work is a true example of what I call “science-help” – he’s all about the research. When you glean takeaway knowledge from a Goleman book, you can be sure it’s been tested and credible enough to earn his writer’s brand.

Because I’m also a midnight snacker of business nibblets, I came across Goleman’s latest article in the Harvard Business Review, “The Focused Leader: How effective executives direct their own—and their organization's—attention". The entire piece is well worth the magazine's $17 cover price (or at least buying a PDF reprint online), but I was especially intrigued by a sidebar in the article about a new species of video games designed to help regain our focus in a focus-fragmenting world.

Dave Eggers or Michael Chabon couldn’t come up with a better ironic twist than video games—engaging and entertaining video games, no less(!)—being used to sharpen attention.  As Goleman discusses in HBR, neuroscientists at the University of Wisconsin-Madison have grabbed hold of this task like tics on a deerhound and produced a video game slated for a 2014 release called, fittingly, “Tenacity”.  Quoting Goleman:

“The game offers a leisurely journey through any of half a dozen scenes, from a barren desert to a fantasy staircase spiraling heavenward. At the beginner’s level you tap an IPad screen with one finger every time you exhale; the challenge is to tap two fingers with every fifth breath. As you move to higher levels, you’re presented with more distractions—a helicopter flies into view, a plane does a flip, a flock of birds suddenly scud by.”

The objective is the same as that of meditation—to draw attention back to a central point despite the number or intensity of distractions dive-bombing one’s focus.  Goleman adds, “When players are attuned to the rhythm of their breathing, they experience the strengthening of selective attention as a feeling of calm focus, as in meditation.”

University of Wisconsin-Madison researchers see this as just the beginning of a focus-enhancing revolution in digital tech.  Through an initiative called Games+Learning+Society (GLS), they are pioneering efforts that marry entertainment with enrichment, and building it all on a platform of solid science.

The team boasts members with serious science street cred, like neuroscientist Richard J. Davidson, founder of the Center for Investigating Healthy Minds, whose work on neuroplasticity (the brain’s ability to change at the neuronal level) could carry Promethean fire to the video game world.  Davidson is leading research to identify what’s happening in the brains of people who use games like Tenacity, with the hypothesis that the technology will help train our brains for enhanced focus, and—believe it or not—greater kindness.

“Modern neuroscientific research on neuroplasticity leads us to the inevitable conclusion that well-being, kindness and focused attention are best regarded as skills that can be enhanced through training,” says Davidson. “This study is uniquely positioned to determine if game playing can impact these brain circuits and lead to increases in mindfulness and kindness.”

Given the deluge of news about video games leading to violence, the idea that they could make us a bit nicer sounds, well, mighty nice. And the truth is that it's not even far-fetched: it's an outcome sitting at the crossroads of ancient wisdom traditions and focus-enhancing technology—as we learn to more consistently focus our attention, we experience a change in both awareness and attitude. As everyone from the Buddha to David Foster Wallace has observed, once our awareness is enhanced and broadened, we can get out of our heads and interact more conscientiously with others.

That's the pro-social goal that has the Wisconsin team fired up about the focus-enhancing power of digital tech.  According to Constance Steinkuehler, co-director of GLS and associate professor of education at UW-Madison: “We’re looking at pro-social skills, particularly being able to recognize human emotions and then respond to them in some productive fashion, which turns out to be harder than you might think.”

Armed with Davidson’s brain-imaging analysis, the team wants to know if playing the games they’ve designed will foster pro-social adaptation in our noggins.

“We look at pre- and post-test measures and see if there is a difference,” said Steinkuehler. “For example, in Tenacity, our mindfulness app, you might ask yourself ‘Is there a dosage effect? Can we see that more game play has more positive effect on kid’s attention?’”

If that's proven out, then GLS's technology-harnessing work could be the perfect counterbalance to the dubious video-game legacy the news media is so fond of blowhorning: that gaming does little more than foster anti-social behavior, everything from bullying to serial violence.

At a less radical level, the UW-Madison team’s work may also provide an antidote to the insular effects of digital tech. If doses of Tenacity, or similar games, leads to heightened focus and social awareness, then spending time buried in your smartphone or tablet could have an upside beyond accruing more gold and elixir for your barbarian clan.

“There’s this tremendous amount of time and energy investment in games and media,” says Steinkuehler. “So part of what we’ve been trying to figure out is how do we take some of that time and make it beneficial for the people engaged in it? We have examples from television or film of documentaries, of art pieces, of indie films, of shows like Sesame Street, that actually have documented benefits for their viewers. So games are another media, why not use them?”

It’s this pragmatic view of technology, as opposed to the absolutist view that too often creeps into our mindspace, that will eventually win the day. As Sesame Street proved decades ago amidst the clamor of “TV is an anti-educational evil!” fear mongering, we can make use of technology to enrich minds. The difficulty in doing so arises from fighting against path-of-least-resistance thinking—human nature's chronic disease of default—that turns us into willing slaves of our time-chewing vices.

The work of the GLS team and others crafting new uses for digital tech reminds us that how technology ultimately affects us is an outcome we can, and should, influence. If we punt on that responsibility, we shouldn't be surprised at the bad news that invariably follows.  But if we see the responsibility as an opportunity, we'll be surprised at how much good can come from the ones and zeroes in our hands.

David DiSalvo's newest book, Brain Changer, is now available at AmazonBarnes and Noble and other major booksellers.

Thursday
Jan162014

Study Shows That Electrical Stimulation Can Boost The Brain's Brakes 

Using harmless electrical stimulation, researchers have shown that they can boost self-control by amplifying the human brain’s “brakes.”

Researchers from The University of Texas Health Science Center at Houston (UTHealth) and the University of California, San Diego asked study participants to perform simple tasks in which they had to exert self-control to slow down their behavior. While doing so, the team used brain imaging to identify the areas of the participants’ prefrontal cortex (sometimes called the brain’s “command and control center”) associated with the behavior—allowing them to pinpoint the specific brain area that would need a boost to make each participant’s “braking” ability more effective.

They then placed electrodes on the surface of the participants’ brains associated with the prefrontal cortex areas linked with the behavior.  With an imperceptible, computer-controlled electrical charge, researchers were able to enhance self-control at the exact time the participants needed it.

"There is a circuit in the brain for inhibiting or braking responses," said Nitin Tandon, M.D., the study's senior author and associate professor in The Vivian L. Smith Department of Neurosurgery at the UTHealth Medical School. "We believe we are the first to show that we can enhance this braking system with brain stimulation."

To make sure that specifically stimulating the prefrontal cortex was really causing the effect, the researchers conducted a follow-up in which they placed the electrodes on other surface areas of the participants’ brains. Doing so had no effect.

That’s an important point, because it separates this study from past research that used electrical stimulation to disrupt general brain function.  In contrast, this study shows that particular parts of the prefrontal cortex form a self-control circuit that can be externally enhanced.

What also makes this study noteworthy is that it was double-blind-- neither the researchers nor participants knew when or where the electrical charges were being administered.  That’s critical because it means the participants would not know when to intentionally slow down their behavior to exaggerate the effect. They were, in a very real sense, being externally controlled by the stimulation, albeit only briefly.

The study has a few caveats. First, all of the participants were volunteers suffering from epilepsy who agreed to be monitored for seizures by hospital staff during the experiment.  Second, there were only four participants—though all four experienced the self-control boosting effect.  Obviously, placing electrodes on the surface of the brain is an invasive procedure, hence the small number of participants.

If this research sounds a little scary to you, you can relax knowing that we're a long way from externally controlling peoples' behavior. The true value of this study is to demonstrate that the brain's self-control circuit can be amplified, at least under certain conditions.

Placing electrodes on peoples' brains isn't a practical solution, but eventually the same effect may be triggered with scalp electrodes and, down the road, with medication that targets the self-control circuit. That may one day be promising news for sufferers of behavioral disorders like Tourette’s Syndrome and OCD.

The study was published in The Journal of Neuroscience.

David DiSalvo's newest book, Brain Changer, is now available at AmazonBarnes and Noble and other major booksellers.