The Daily Brain is a website for people who love asking questions and searching for answers – especially when the answers lead to new questions.

 

Syndicated by

Search
Get the Books

 

 

 

 

Featured Goodies
Thursday
Dec192013

New Study Asks: What Kind Of Bored Are You?

Most of us think we already know what it means to be bored, and we’ll look for just about any diversion to avoid the feeling.  But according to recent research, boredom is not a one-size-fits-all problem — what triggers or alleviates one person’s boredom won’t necessarily hold sway for someone else.

According to researchers publishing in the journal Motivation and Emotion, there are four well-established types of boredom:

Indifferent boredom (characterized by feeling relaxed and indifferent – typical coach potato boredom);

Calibrating boredom (characterized by feeling uncertain but also receptive to change/distraction);

Searching boredom (characterized by feeling restless and actively searching for change/distraction); and

Reactant boredom (characterized by feeling reactive, i.e. someone bored out of her mind storming out of a movie theater to find something better to do).

The most recent study by the boredom-defining research team has now identified a fifth type--apathetic boredom--and it's the most troublesome of all. People exhibiting apathetic boredom are withdrawn, avoid social contact, and are most likely to suffer from depression. In fact, apathetic boredom could be considered a portal leading to depression.

The sort of remedy that would alleviate “searching bordeom”—actively pursuing change—would not help someone with apathetic boredom, because change itself represents too much of a threat. Apathetic boredom feeds on itself, perpetuating over and over the same feelings that make it so difficult to escape. The uncertainty of change is just another reason to stay cloistered away.

Study co-author Dr. Thomas Goetz of the University of Konstanz and the research team conducted two real-time experiments over two weeks involving students from German universities and high schools. Participants were given personal digital assistants to record their activities, experiences and feelings throughout the day for the duration of the study. The results showed that not only do different people experience different types of boredom, but also that people don't typically switch-hit between flavors of boredom – any given person will tend to predominantly experience one type of boredom far more than others.

The most alarming finding of the study is that apathetic boredom was reported by almost 40 percent of the high school students, suggesting a link between apathetic boredom and rising numbers of depressed teens.

The obvious drawback of this research is that participants self-reported their feelings and experiences during the study period, and self-reporting is often unreliable.  On the plus side, the researchers ran the study for two full weeks instead of just a few days, and had far more data to analyze as a result.

The research was published in the journal Motivation and Emotion.

David DiSalvo's newest book, Brain Changer, is now available at AmazonBarnes and Noble and other major booksellers.

Wednesday
Dec042013

Why Cheating Is Like A Drug 

Every so often a news story comes out about a celebrity caught shoplifting. The standard response is “Why?” The reason isn’t lack of money, and it’s certainly not that getting arrested is good for the celeb's career, so what would make an A-lister take the chance?

New research suggests that, for some people, stealing or cheating has much in common with doing a line of cocaine – it’s all about the buzz.  Psychologists call it the "Cheater’s High."

Researchers from the Foster School of Business at the University of Washington conducted three experiments to test the theory.  The first used a cash reward as the carrot for solving word puzzles. The researchers set up the experiment in such a way that participants had a chance to illicitly get a look at the correct answers, with the expectation that many of them would use the answers to cheat on the test. As predicted, more than 40% of the participants cheated. After the test, participants were asked to report on their emotions. Researchers found that the cheaters consistently reported a bigger boost in positive emotion (such as a sense of “self-satisfaction”) compared to those who didn’t cheat.

In a follow-up study, the research team removed the financial-reward factor (which by itself could spark positive emotions) and asked a different group of participants to solve a series of math problems on a computer.  Once again, the test was set up so that participants could—if they chose—get a peek at the answers. This time almost 70% of participants cheated, and once again they reported higher levels of positive emotion than the non-cheaters, despite not winning any money.

In the final study, the research team used Amazon’s Mechanical Turk survey site to recruit 205 people online and offered them a chance to win cash for solving word puzzles. The researchers sent a portion of the participants a message that they were on the “honor system” when reporting their answers because the researchers wouldn’t be able to tell if they were cheating (in truth, they actually could tell). The purpose of the message was to remove the possibility that cheaters weren’t aware that they were cheating, or that they might “play dumb” about having cheated. The message also implied that if the participants chose to cheat, they were in effect stealing the money.

The results in this case were even more significant: not only did the cheaters report more positive emotion than non-cheaters, but the cheaters who received the warning message reported even greater self-satisfaction than cheaters who didn’t get the message.

The research team’s takeaway from all three experiments is that the cheaters high is sparked by the thrill of getting away with it.  The final experiment showed this most clearly, because the plain face truth that participants were knowingly cheating actually increased their “high.”

Since this study only focused on cheating and stealing, it's not clear that the same dynamic plays out in cases where someone directly harms another person, which would of course be hard to test for obvious reasons.

The research was published in the Journal of Personality and Social Psychology.

David DiSalvo's newest book, Brain Changer, is now available at AmazonBarnes and Noble and other major booksellers.

Sunday
Dec012013

Study: Making Direct Eye Contact Is Not An Effective Way To Persuade

Few popular beliefs are as unshakable as, “If you want to influence someone, always make direct eye contact.” But new research suggests that this bit of sturdy pop lore is hardly gospel – in fact, in many circumstances a direct gaze may result in the exact opposite effect.

Researchers from Harvard, the University of British Columbia and the University of Freiberg used newly developed eye-tracking technology to test the claim during two experiments.  In the first, they had study participants watch a speaker on video while tracking their eye movements, and then asked how persuaded they were by the speaker. Researchers found that the more time participants spent looking into the speaker’s eyes, the less persuaded they were by the speaker's argument. The only time looking into the speaker’s eyes correlated with being influenced was when the participants already agreed with the speaker’s opinions.

So the first takeaway is: when a speaker gives an opinion contrary to the audiences’, looking into her or his eyes has the exact opposite of the intended effect.

In a second experiment, some participants were told to look into the speaker’s eyes and others were told to watch the speaker’s mouth. Once again, participants who looked into the speaker's eyes were less receptive to his opposing arguments, and also said they were less inclined to interact with advocates of the speaker’s argument.

Which leaves us with another takeaway contrary to the popular belief: if your audience is already skeptical of your arguments, looking into your eyes will not only reinforce their skepticism, but also make them less likely to interact with others expressing your views.

According to Julia Minson of the Harvard Kennedy School of Government, co-lead researcher of the studies, “The findings highlight the fact that eye contact can signal very different kinds of messages depending on the situation. While eye contact may be a sign of connection or trust in friendly situations, it's more likely to be associated with dominance or intimidation in adversarial situations.”

Her advice to everyone from parents to politicians: “It might be helpful to keep in mind that trying to maintain eye contact may backfire if you're trying to convince someone who has a different set of beliefs than you.”

In the next round of research, the team is going to investigate whether eye contact in certain situations correlates with patterns of brain activity associated with responding to a threat, and an increase in stress hormones and heart rate.

There’s a corollary to these findings that’s found throughout the animal world, one that everyone who deals with everything from dogs to gorillas already knows – looking directly into a potentially aggressive animal’s eyes is not a good idea. The gesture is taken as a threat and might draw an attack.

Quoting another of the researchers, Frances Chen, “Eye contact is so primal that we think it probably goes along with a whole suite of subconscious physiological changes.”

The study was published in the journal Psychological Science.

David DiSalvo's newest book, Brain Changer, is now available at AmazonBarnes and Noble and other major booksellers.

Saturday
Nov232013

Why Willpower Fails You And What To Do About It

Thursday
Nov142013

How Exercise Makes Your Brain Grow

David DiSalvo's newest book, Brain Changer, is now available at AmazonBarnes and Noble and other major booksellers. 

 

Research into “neurogenesis”—the ability of certain brain areas to grow new brain cells—has recently taken an exciting turn. Not only has research discovered that we can foster new brain cell growth through exercise, but it may eventually be possible to “bottle” that benefit in prescription medication.

The hippocampus, a brain area closely linked to learning and memory, is especially receptive to new neuron growth in response to endurance exercise. Exactly how and why this happens wasn’t well understood until recently. Research has discovered that exercise stimulates the production of a protein called FNDC5 that is released into the bloodstream while we’re breaking a sweat. Over time, FNDC5 stimulates the production of another protein in the brain called Brain Derived Neurotrophic Factor (BDNF), which in turns stimulates the growth of new nerves and synapses – the connection points between nerves – and also preserves the survival of existing brain cells.

What this boils down to in practice is that regular endurance exercise, like jogging, strengthens and grows your brain. In particular, your memory and ability to learn get a boost from hitting the pavement.  Along with the other well-established benefits of endurance exercise, such as improved heart health, this is a pretty good reason to get moving. If jogging isn’t your thing, there’s a multitude of other ways to trigger the endurance effect – even brisk walking on a regular basis yields brain benefits.

Now researchers from the Dana-Farber Cancer Institute at Harvard Medical School (HMS) have also discovered that it may be possible to capture these benefits in a pill.  The same protein that stimulates brain growth via exercise could potentially be bottled and given to patients experiencing cognitive decline, including those in the beginning stages of Alzheimer’s and Parkinson’s.

"What is exciting is that a natural substance can be given in the bloodstream that can mimic some of the effects of endurance exercise on the brain," said Bruce Spiegelman, PhD, of Dana-Farber and HMS and co-senior author of the research report with Michael E. Greenberg, PhD, chair of neurobiology at HMS.

In the new study, the research team artificially increased BDNF in the brains of mice by using a harmless virus to piggyback FNDC5 molecules through the bloodstream of the mice.  After seven days, researchers found a significant increase in BDNF in the hippocampus area of the mice brains – the brain area crucial for memory and learning.

"Perhaps the most exciting result overall is that peripheral delivery of FNDC5 with adenoviral vectors (i.e. a virus) is sufficient to induce central expression of BDNF and other genes with potential neuroprotective functions or those involved in learning and memory," the authors said.

The research team cautions that since this is an animal study, it’s far too early to conclude that the same effect will work in humans, but the significant results of this study show promise for future research into delivering cognitive benefits to the human brain via a similar mechanism. Cognitive boost for suffers of Alzheimer’s, Parkinson’s and other debilitating diseases in the form of a brain-growth pill may not be too far off.

More immediately, neurogenesis research has provided yet another great reason to get up, get out and get moving.

The research report was published in the journal Cell Metabolism.

You can find David DiSalvo on Twitter @neuronarrative.